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Abstract

In this paper we show how the nonlinear kinetics of energy transfer in propelling fluids and imperfect (non-Carnot)

thermal machines can be imbed into the contemporary theory of irreversible energy generators and heat pumps. We

quantitatively describe effects of nonlinear heat transfer assuming that heat fluxes are proportional to the difference

of temperature in certain power, Ta. We also show that the energy and particle transports can be treated either in a

conventional way or as peculiar chemical reactions. In the latter case a recent approach distinguishes in each elementary

transfer step two competitive (unidirectional) fluxes and the resulting flux follows as their difference. Nonlinear imper-

fect systems are investigated in the context of efficiency, heat flux, entropy production and mechanical power, for steady

and unsteady operations.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

When a hot fluid interacts indirectly with an environ-

ment through an engine mechanical power is produced.

The mechanism of heat transfer between the fluid and

the medium circulating in the engine has the significant

influence on the efficiency of power production. The heat

transfer is not necessarily linear. Gutowicz–Krusin et al.

[1] derived a performance bound of a Carnot engine with

the heat transfer law q / (DT)n. De Vos [2], Chen and

Yan [3], Chen et al. [4], Gordon [5], Wu [6,7] and Chen

et al. [8], have investigated the effect of the heat transfer

law on the performance of irreversible heat engines. Yet,

the works quoted above were restricted to steady sys-
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tems (infinite reservoirs) and ignored the effect of inter-

nal irreversibility within the energy generator by

considering Carnot engines and ‘‘endoreversible’’ sys-

tems. Our approach here extends our previous results

[9,10] towards abandoning endoreversibility and provid-

ing nonlinear theory for imperfect unsteady processes

that arise due to the finiteness of the resource propelling

the engine (hot reservoir). Associated with the work

delivered from a finite resource interacting with the envi-

ronment in a finite time is the problem of a an exergy

function. It is considered in the last section of the paper.

The exergy considered here refers to a finite-time mini-

mally irreversible process and, moreover, includes an

imperfection factor of the energy generator, thus it rep-

resents a finite-time (irreversible) generalization of the

classical exergy. We show that the generalized exergy

provides suitable bounds on the energy production (con-

sumption) that are stronger than classical thermostatic

bounds.
ed.
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Nomenclature

A1 generalized exergy of a continuous process

Aclass classical available energy (exergy)

c molar heat capacity defined as the derivative

dh/dT

G molar flux of fluid, total flow rate

g1, g partial and overall conductances

HTU height of transfer unit

h molar enthalpy

n stage number

P, p cumulative power output and power output

at a stage

Q1 cumulative heat

q1 driving heat power

R(x, t) optimal work function of cost type in terms

of state and time

r1, r2 resistances, reciprocals of conductances g1
and g2

S entropy of controlled phase

DS10 entropy change of the circulating fluid along

the isotherm T10 in Fig. 1

DS20 entropy change of the circulating fluid along

the isotherm T20 in Fig. 1

Sr specific entropy production

T temperature of controlled phase

T1, T2 bulk temperatures of fluids 1 and 2

T10, T20 temperatures of circulating fluid (Fig. 1)

Te constant equilibrium temperature of

environment

T 0 Carnot temperature, temperature of con-

trolling phase

t physical time, contact time
_T ¼ dT=ds rate of temperature change as the control

variable

V = maxW optimal work function of profit type

W = P/G total specific work or total power per unit

molar flux of fluid

x transfer area coordinate

Greek symbols

a 0 overall heat transfer coefficient

g = p/q1 first-law efficiency

U factor of internal irreversibility

rs cumulative entropy production

s nondimensional time, number of the heat

transfer units (x/HTU)

Subscripts

i i-th state variable

mp maximum power point

1, 2 first and second fluid

Superscripts

e environment, equilibrium

f final state

I initial state

N total number of stages

Fig. 1. Principle of designations for two basic modes with

internal and external dissipation: power yield in an engine and

power consumption in a heat pump. The primed temperatures

characterize the circulating fluid.
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In this research energy limits for imperfect cycles pro-

ducing or consuming mechanical energy are investigated

in the framework of finite time thermodynamics by tak-

ing the maximum power as the objective. Since the heat

transfer law has a strong effect on the performance of

the cycle an approach is pursued that aspires to derive

a relatively large number of basic equations in the form
independent on the mode of energy transfer between the

circulating fluid and reservoirs. In the nonlinear mode-

ling which is the methodological extension of that

known for the linear case the heat transfer is assumed

to obey the power law Ta (heat flux proportional to

the difference in Ta) instead of Newton�s linear law. A

more recent approach is also briefly considered in which

one distinguishes in each elementary transfer process

two competitive (unidirectional) fluxes and the resulting

flux being their difference. The unidirectional fluxes are

equal in the thermodynamic equilibrium and their differ-

ence off the equilibrium constitutes the observed flux

representing the resulting rate of the process. In this ap-

proach nonlinear resistance and a related affinity play

important role. In most general situation when the par-

ticle transfer is included the non-equilibrium transports

are described by equations containing exponential terms

with respect to chemical potentials of Planck and tem-

perature reciprocal, that simultaneously are analytical

expressions characterizing the transport of the substance

or energy by the energy barrier. We show how the kinet-

ics of this sort can be imbed into the contemporary the-

ory of thermal energy generators.
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2. Thermodynamic issues

The classical exergy defines bounds on the common

work delivered from (or supplied to) slow, reversible

processes [11]. Such bounds are reversible as the magni-

tude of the work delivered during the reversible ap-

proach to equilibrium is equal to the one of the work

supplied, after the initial and final states are inverted,

i.e. when the second process reverses to the initial state

of the first. Our research is towards generalization of

the classical exergy for finite rates. During the approach

to the equilibrium the so-called engine mode of the sys-

tem takes place in which the work is released, during the

departure the so-called heat-pump mode occurs in which

the work is supplied. The work W delivered in the engine

mode is positive by assumption. In the heat-pump mode

W is negative, which means that the positive work (�W)

must be supplied to the system. To find a generalized ex-

ergy, optimization problems are considered, for the

maximum of the work delivered [max W] and for the

minimum of the work supplied [min (�W)]. We show

that while the reversibility property is lost for such ex-

ergy, its (kinetic) bounds are stronger and hence more

useful than classical thermostatic bounds. This substan-

tiates role of the extended exergy for evaluation of en-

ergy limits in practical systems.

With functionals of power generation (consumption)

at disposal we can formulate the Hamilton–Jacobi–Bell-

man theory (HJB theory) for the extended exergy and

related extremum work. The HJB theory is the basic

ingredient in variational calculus and optimal control

[12–14]. A HJB equation extends the classical Hamil-

ton–Jacobi equation [15] by addition of extremum con-

ditions, and it is essential to develop numerical

methods in complex cases (with state dependent coeffi-

cients) when the HJB equation of the problem cannot

be solved analytically. Due to the direct link between

the HJB theory and dynamic programming the associ-

ated numerical methods make use the Bellman�s recur-

rence equation. These methods are complementary

with respect of the Pontryagin�s principle [16], as both

are effective seeking methods of functional extrema.

Yet, in spite of its power, Pontriagin�s principle does

not yield the principal function V which is in our case

a general work potential describing the change of the ex-

tended exergy, the main result being sought. Otherwise,

when a HJB equation is known, the exergy (or work) is

explicit, and the discrete numerical problem leads to

Bellman�s recurrence equation, solvable by dynamic pro-

gramming [17]. Our problem of generalized exergy falls

into the category of finite-time potentials, an important

problem of contemporary thermodynamics [18]. In this

paper we solve the problem of extremum work by using

the concept of multistage energy production or con-

sumption, where each stage is the so-called Curzon–Ahl-

born–Novikov process [18,19]. The concept of single
irreversible stage is illustrated in Fig. 1 that presents

the temperature-entropy diagram of an arbitrary

irreversible stage. Each stage can work either in the

heat-pump mode (larger, external loop in Fig. 1) or in

the engine mode (smaller, internal loop in Fig. 1). Fig.

1 describes the principle of designations used for two ba-

sic modes with internal and external dissipation: power

yield in an engine and power consumption in a heat

pump. The primed temperatures characterize the circu-

lating fluid.

Our unsteady analysis here extends the previous anal-

yses of the problem [18–21] by taking into account inter-

nal irreversibilities within the thermal machines at each

stage of the operation following the recent method that

applies the factor of internal irreversibilities, U [22]. By

definition, U = DS2 0/DS1 0 (where DS1 0 and DS2 0 are

respectively the entropy changes of the circulating fluid

along the two isotherms T1 0 and T20 in Fig. 1) equals

the ratio of the entropy fluxes across the thermal ma-

chine, U = Js20/Js10. Due to the second law inequality at

the steady state the following inequalities are valid:

Js20/Js1 P 1 for engines and Js2 0/Js1 6 1 for heat pumps;

thus the considered ratio U measures the process irre-

versibility. In fact, U is a synthetic measure of the ma-

chine�s imperfection. The quantity U satisfies inequality

U P 1 for engine mode and U 6 1 for heat pump mode

of the system. Our purpose is to derive in terms of U
suitable formulas describing power produced or con-

sumed in steady systems (infinite reservoirs) and a gener-

alized exergy in dynamic systems with the finite resource

reservoir. Fluids with constant molar heat capacity c are

usually treated.
3. Entropy produced and efficiency

We shall follow here a shortest possible way of find-

ing the real work W and work limit (extremum of W) by

using the so-called Gouy–Stodola law that links the lost

work with the entropy production [11]. In the analysis

we shall make use of the fact that the thermal efficiency

of any real thermal engine can always by written in the

form g = 1�dQ2/dQ1. By evaluating total entropy pro-

duction at the stage (the sum of external and internal

parts), Sr, as the difference between the outlet and inlet

entropy fluxes we find in terms of the first-law efficiency

g

dSr ¼ dQ1ð1� gÞ
T 2

� dQ1

T 1

¼ dQ1

T 2

ð1� g � T 2=T 1Þ: ð1Þ

This is a general equation as there was not any spe-

cial assumptions involved in its derivation. It states that

the entropy production in an arbitrary thermal engine is

directly related to the deviation of the engine�s efficiency

from the corresponding Carnot efficiency. This conclu-

sion leads us to an important analytical formula for
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the total entropy source that will enable its direct opti-

mization. The entropy balance of the thermal machine

contains the internal entropy production as the source

term in the expression

dQ2

T 20
� dQ1

T 10
¼ dSint

r : ð2Þ

In terms of the coefficient

U ¼ 1þ T 10dS
int
r =dQ1 ð3Þ

called the internal irreversibility factor the entropy bal-

ance of the internal part of the system takes the form

usually applied for thermal machines

U
dQ1

T 10
¼ dQ2

T 20
: ð4Þ

One can evaluate U from the average value of the

internal entropy production that describes the effect of

irreversible processes within the thermal machine.

Clearly, in many cases U is a complicated function of

the machine�s operating variables. In those complex

cases one applies the data of rint
s ¼ dSint

r =dt to calculate

an averaged value of the coefficient U. In the analysis

of the operation considered the quantity U is treated

as the process constant. In other words, it is an average

value of U , evaluated within the boundaries of operative

parameters of interest that is used in most of the analy-

ses of thermal machines including the present one. For

chillers and energy generators experimental data of

rint
s ¼ dSint

r =dt are available that allow the calculation

of U; see Ref. [22] for more information.

Consequently, the efficiency g can be evaluated in

terms of the parameters characterizing the thermal

machine

g ¼ 1� dQ2

dQ1

¼ 1� U
T 20

T 10
¼ 1� 1þ T 10

dSint
r

dQ1

� �
T 20

T 10
: ð5Þ

After eliminating g from Eqs. (1) and (5) we conclude

that, quite generally, the total entropy production can be

written in a transformed form

dSr ¼ dQ1

T 2

U
T 20

T 10
� T 2

T 1

� �

¼ dQ1

ðU � 1Þ
T 0 þ 1

T 0 �
1

T 1

� �� �
: ð6Þ

Apparently the first term in the resulting expression

of Eq. (6) describes the internal entropy source (within

the thermal machine) and the second one the external

entropy source (within the reservoirs). However the divi-

sion of Sr into the two parts is actually different, see

Eqs. (10) below. Eq. (6) only states that in the ‘‘endore-

versible’’ case (U = 1) the external entropy production is

the same as that in the case of the contact of two bodies

with temperatures T1 and T 0. Equivalently, after using in

(6) the internal irreversibility factor (3)
dSr ¼ T 10

T 0 dS
int
r þ dQ1

1

T 0 �
1

T 1

� �
: ð7Þ

In the last two equations the structural quantity

called the Carnot temperature T 0 was introduced that

satisfies the thermodynamic relation

T 0 	 T 2T 10=T 20 : ð8Þ

In terms of the Carnot temperature T 0 and factor U
the efficiency g, Eq. (5), assumes the simple, pseudo-Car-

not form

g ¼ 1� U
T 2

T 0 : ð9Þ

The efficiency decrease is caused by finite flows. The

associated power of entropy production per unit time

follows from Eqs. (6) and (7)

rs ¼ q1
ðU � 1Þ

T 0 þ 1

T 0 �
1

T 1

� �� �

¼ T 10

T 0 rint
s þ q1

1

T 0 �
1

T 1

� �
: ð10Þ

The true internal part of the quantity rs is the direct

consequence of Eq. (3)

rint
s ¼ q1ðU � 1Þ

T 10
: ð11aÞ

Whereas the true external part is

rext
s ¼ q1 ðU � 1Þ 1

T 0 �
1

T 10

� �
þ 1

T 0 �
1

T 1

� �� �
: ð11bÞ

While Eq. (10) can be applied immediately either of

Eq. (11) call for a function T1 0(T1,q1) such as that in

the first term of Eq. (13). When the upper heat exchange

rate in both reservoirs depends on the difference of tem-

peratures in the power a (a = 4 for radiative energy ex-

change and 1 for Newtonian one) i.e. for

q1 ¼ g1ðT a
1 � T a

10 Þ ð12Þ

then, since T 10 ¼ ðT a
1 � q1=g1Þ

1=a
, Eq. (7) yields the fol-

lowing formula for the power of entropy generation

rs ¼
ðT a

1 � q1=g1Þ
1=a

T 0 rint
s þ q1

1

T 0 �
1

T 1

� �
: ð13Þ

This means that only in the ‘‘endoreversible’’ case,

i.e. when the internal entropy production vanishes, the

external entropy production is simply related to the

product of heat q1 and the suitable difference of temper-

ature reciprocals, ðT 0Þ�1 � ðT�1
1 Þ. as in the two-body

contact. In the general case of a finite internal entropy

production the external part of rs follows in terms of

its internal part in the form

rext
s ¼ ðT a

1 � q1=g1Þ
1=a � T 0

T 0

 !
rint
s þ q1

1

T 0 �
1

T 1

� �
ð14Þ
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so that the sum of both parts of the entropy production

agrees with formula (13).

The definition (8) may also be derived from the invar-

iance of the entropy production with respect to variables

transformation when passing from constrained tradi-

tional controls T1 0 and T 2 0 to the unconstrained control

T 0. We conclude that the analytical description of ther-

mal energy converters in terms of the Carnot tempera-

ture is particularly simple.

The efficiency worsening caused by the dissipation is

described in a general way by the transformed formula

(1)

g ¼ gC � T 2rs=q1: ð15Þ

Of course, the pseudo-Carnot formula, Eq. (9), also be-

longs to the class of imperfect efficiencies of the type (15)

as it can be given the form

g ¼ gC � T 2

U
T 0 �

1

T 1

� �
ð16Þ

which implies the ratio rs/q1 consistent with Eq. (6) and

(10). Various equations that describe the entropy pro-

duction rs, presented above, are helpful in definite situ-

ations when one wants to evaluate the efficiency

worsening. Yet the knowledge of the entropy production

rs is also necessary in calculations of generalized exergies

considered in the final section of this paper. But in the

dynamical cases essential is also the best time behavior

of rs.
4. Heat flux and power in steady operations

Consider steady thermal machines driven by fluids

exhibiting nonlinear properties.

We begin with the symmetric nonlinear case in which

the heat transfer rate is proportional to the difference of

absolute temperatures in certain power a. The case of

a = 4 refers to the radiation, a = �1 to the Onsagerian

kinetics and a = 1 to the Fourier law of heat exchange.

(In the Onsagerian case the quantities gi are negative

in the common formalism considered.)

Next we consider the ‘‘hybrid nonlinear case’’ in

which the upper-temperature fluid is still governed by

the kinetics proportional to the difference in Tn whereas

the kinetics in the lower reservoir is Newtonian.

4.1. Symmetric nonlinear case

We assume that the energy exchange process in the

upper reservoir satisfies Eq. (12), and that an equa-

tion of the same type and with the same coefficient a is

valid for the energy exchange in the lower reservoir,

namely

q2 ¼ g2ðT a
20 � T a

2Þ: ð17Þ
To express the internal balance equation for the

entropy

Ug1ðT a
1 � T a

10 Þ=T 10 ¼ g2ðT a
20 � T a

2Þ=T 20 ð18Þ

in terms of T 0 and T1 0 we substitute T2 0 	 T1 0T2/T
0 into

(18). Next we solve the result obtained with respect to

T1 0. This leads to an equation describing the upper tem-

perature of the circulating fluid T1 0 in terms of T 0

T 10 ¼ T a
1 � g2

T a
1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2

 !1=a

: ð19Þ

From this expression and Eq. (12) the heat flux q1 fol-

lows in terms of T 0. This heat flux is obtained in the form

q1 ¼ g1g2
T a

1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2
ð20Þ

which represents the ‘‘thermal characteristics’’ of the

system. An expression for T2 0 corresponding with (19)

follows from the thermodynamic definition of Carnot

temperature, T2 0 	 T1 0T2/T
0. Also, q2 = q1(1 � g), where

g is defined by the pseudo-Carnot expression (9). Thus

all necessary quantities are found. We observe that in

the case of a = 1 the kinetics of heat exchange depends

on the difference of two temperatures T1 � T 0, as in

the case of direct two-body contact. Yet, in nonlinear

processes the heat flux (20) emerges as function of three

(not merely two) temperatures, T 0, T1 and T2. This

means that the analogy with the two-body contact (sat-

isfied when a = 1) is invalid in the case of nonlinear proc-

esses. Still we can evaluate associated power limits by

maximizing power p related to Eq. (20) with respect to

the free Carnot control, T 0; see Eq. (23) below.

For a = 4 the model describes the radiation engine

usually called the Stefan–Boltzmann engine. In spite of

the model�s simplicity, its two ‘‘resistive parts’’ take rig-

orously into account the entropy generation caused by

simultaneous emission and absorption of black-body

radiation, the model�s property which some of FTT

adversaries seem not to be aware of. This entropy gener-

ation is just the external part of the total entropy pro-

duction that follows as the ‘‘classical’’ sum:

rext
s ¼ q1ðT�1

10 � T�1
1 Þ þ q2 T�1

2 � T�1
20

� �
; ð21Þ

where each qi uses the Stefan–Boltzmann law.

For the ‘‘symmetric’’ kinetics governed by the differ-

ences in Ta, the T 0-representation of the total entropy

production in the system follows from Eqs. (10) and(20)

rs ¼ g1g2
T a

1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2

ðU � 1Þ
T 0 þ 1

T 0 �
1

T 1

� �� �
:

ð22Þ

The superiority of Carnot control T 0 over the heat

flux control q1 may be noted here. Since the heat–flux

expression (20) cannot generally be inverted to get an
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explicit function T 0(q1), the explicit formula for the

heat–flux representation of the entropy production or

associated mechanical power p cannot generally be

found in an analytical form. Still we can express the en-

tropy production and related power p in terms of Carnot

control, T 0, and then evaluate a limiting power by max-

imizing p with respect to the free Carnot control, T 0. The

appropriate power expression is

p ¼ q1g ¼ g1g2
T a

1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2
1� U

T 2

T 0

� �
: ð23Þ

In the case of analytical difficulties that may occur for

a different from the unity the maximization can easily be

performed graphically by making the chart of p(T) at all

remaining variables kept constant. Thus, in general, the

maximization can be performed analytically or graphi-

cally using the Carnot T 0 as the free control.

4.2. Hybrid nonlinear case

We consider now the case when the radiation law

(a = 4) governs the heat flow only in the upper reservoir,

whereas it is the Newtonian model that governs the

lower one

q2 ¼ g2ðT 20 � T 2Þ: ð24Þ

Again, the efficiency of the imperfect unit is satisfied

by expression g = 1�UT2 0/T1 0. To express the internal

balance equation for the entropy

Ug1ðT a
1 � T a

10 Þ=T 10 ¼ g2ðT 20 � T 2Þ=T 20 ð25Þ

in terms of T 0 and T1 0 we substitute T2 0 	 T1 0T2/T
0 into

(25). This leads to T 0 in terms of T10

Ug1ðT a
1 � T a

10 Þ ¼ g2ðT 10 � T 0Þ ð26Þ

and then to the mechanical power p in terms of T1 0 The

thermal efficiency of the engine can be obtained in the

form using the temperature T1 0 as an effective control

variable

g ¼ 1� U
T 2

T 0 ¼ 1� UT 2

T 10 � Ug1ðT a
1 � T a

10 Þ=g2
: ð27Þ

This leads to the mechanical power expression with

the explicit control T1,

p ¼ q1g

¼ g1ðT a
1 � T a

10 Þ 1� UT 2

T 10 � Ug1ðT a
1 � T a

10 Þ=g2

� �
: ð28Þ

Since from Eq. (12) T 10 ¼ ðT a
1 � q1=g1Þ

1=a
, the heat

flux representation of the above equation is obtained

in the form

p ¼ q1g ¼ q1 1� UT 2

ðT a
1 � q1=g1Þ

1=a � Uq1=g2

 !
: ð29Þ
Eqs. (28) or 29) allow analytical or graphical maximi-

zation of power with respect to a single control variable,

T10 or q1. This leads to the steady limits on power pro-

duction in imperfect units.

We note that in general a suitable control may be the

Carnot temperature itself, a function or an operator of

the remaining variables. The operator structure of T 0

is frequent in dynamical problems. These occur in the

case when the thermal potential of one of the reservoirs

changes (decreases in the case of an engine) due to its

finite capacity.
5. Dynamical theory for finite resources

When resources become finite and/or the propelling

fluid flows at a finite rate the driving temperature

and other intense parameters decrease along the pro-

cess path. The above analysis needs to be generalized

to take into account the decay of the thermal poten-

tial of resource in time or space. This means that the

previous (steady) analysis need to be replaced by a

dynamic one and the mathematical formalism trans-

ferred from the realm of functions to the realm of

functionals. Here the optimization task is to find an

optimal profile of the driving temperature T 0 along the

resource path (fluid�s path) that assures the minimum

of the integral entropy production and—simultane-

ously—the extremum of the work consumed or

delivered.

In dynamical systems differential forms of expres-

sions are necessary. For a suitably defined time variable

s (associated with the resource fluid; see Eq. (33) below)

and an arbitrary type of heat transfer (Newtonian or

not) the total entropy production can be obtained in

an exact form as the sum of two apparent contributions,

external and internal. Each apparent expression de-

scribes the contribution to the entropy source only

approximately (hence their individual use is not recom-

mended), yet their sum provides an exact expression

for the total entropy source. The apparent internal en-

tropy production is

rint0

s ¼ �
Z sf

si
GcðT Þ

U � 1

T 0ðT 1; _T Þ
_T 1ds1 ð30Þ

whereas the apparent external part

rext0

s ¼ �
Z sf

si
GcðT Þ

1

T 0ðT 1; _T 1Þ
� 1

T 1

� �
_T 1ds1: ð31Þ

Here the essential nonlinearities are caused by the

temperature dependence of the quantity Gc 	 Gc or the

product of the molar fluid�s flux and its molar heat

capacity. The total entropy production (exact expres-

sion), which determines the lost work in equations of

extended availabilities is the integral
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rs ¼ �
Z sf

si
GcðT Þ

U
T 0 �

1

T 1

� �
_T 1ds1: ð32Þ

The limiting production or consumption of mechan-

ical energy is associated with extremum power or the

minimal sum of functionals (30) and (31) or minimum

of the overall entropy production (32). These equations

assume that it is possible to determine explicit form of

functions describing the Carnot temperature T 0 in terms

of the current fluid�s temperature T and its time deriva-

tive. Such functional structure would allow to apply the

variational calculus in the optimization analysis. If this

function is impossible to find in an explicit form then

Eqs. (30) and (31) should be written in the form in which

T 0 and T1 are two separable variables in the Pontryagin�s
algorithm of the optimal control. In this case a differen-

tial constraint must be added that limits the changes d

T1/dt with the state variable T1 and control T 0 (see Eq.

(35) below).

We shall now specialize to what we called the sym-

metric nonlinear case. It involves the radiative heat trans-

fer (a = 4) in both upper and lower reservoirs and

corresponds with the form (22) of the intensity of total

entropy production.

In the first approach following some literature indica-

tions (e.g. Refs. [23] and [24]) we include the variable

heat capacity flux Gc(T) into the definition of s1 We then

exploit heat exchange formula (20)

q1 ¼ g1g2
T a

1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2
ð20Þ

to define the nondimensional time s1 with the help of the

equality

q1=g1 ¼ �GcðT 1ÞdT 1=ða1avF 1dxÞ 	 �dT 1=ds1; ð33Þ

where Gc 	 Gc is the product of the fluid�s flow and its

molar heat capacity. This equation describes the energy

balance for the propelling fluid. The non-dimensional

time s1 is simultaneously the number of heat transfer

units related to the fluid in the state 1. Eq. (33) means

that the driving heat flux can be measured in terms of

the temperature drop of the propelling fluid per unit of

the non-dimensional time s1. However, the time s1 de-

fined as above includes the variable flux of heat capacity

Gc(T) and possibly other temperature dependent quanti-

ties such as a1. This causes the problem of passage from

time s1 to the usual residence time t or length x requiring

the integration with respect of s1

x ¼
Z s1

0

GcðT 1ðs1ÞÞ
a1avF 1

ds1 ¼
Z s1

0

HTUðT 1ðs1ÞÞds1 ð34Þ

after the temperature profile T1(s1) is found. Still one

can effectively proceed this way. Comparing formula

(33) with the expression describing q1 in Eq. (20) we ob-

tain a differential equation
dT 1=ds1 ¼ �g2
T a

1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2
ð35Þ

which is the differential constraint in the problem of

minimization of total entropy production (32) by the

Pontryagin�s maximum principle. This minimization

leads to optimal profiles T 0(s1) and T1 (s1) that assure
the extremum work produced by an sequential engine

system or consumed by a sequential heat pump system.

As this is the multistage system in which the resource

fluid is applied to produce or consume the extremum

work, the work so obtained is the finite-time exergy of

the resource fluid. However, it should be noted that

the method of variational calculus cannot effectively be

applied to Eq. (35) except the Fourier–Newton case

when a = 1 since only then the control T 0 can easily by

expressed in terms of the time derivative of temperature

T1 and the result substituted to (32) to get a Lagrange

functional.

In the second approach (novel and not less suitable

than the first one) we don�t include the variable Gc into

the definition of the non-dimensional time s1. Rather we

use therein a constant Gc0 (of the same units as Gc) that

appears in an equation describing the variability of Gc

with T. In the case of the radiation fluid (a = 4) the var-

iability of Gc with T accounts for the variable flux of

black photons along the fluid�s path. With the heat

expression (20) and the energy balance (33) the defini-

tion of the height of the transfer unit (HTU) rests now

on a constant quantity Gc0 The constant appears in a

formula describing the heat capacity flux Gc in terms

of T1

GcðT 1Þ ¼ Gc0T a�1=T a�1
0 ¼ Gc0T 1�a

0 T a�1 ð36Þ

where T0 is a reference temperature. In our case T0 is the

initial temperature by assumption. When the cross-sec-

tional area F1 is variable the above equation needs to

be generalized to the form

GcFðT Þ ¼
Gc0

F 10

T a�1=T a�1
0 ¼ Gc0

F 10

T 1�a
0 T a�1 ð37Þ

which describes the flux density of the product of molar

flow G and c rather than the flux itself. In the theory of

transport phenomena it is customary to assume the con-

stancy of HTU. In nonlinear processes this constancy

must be associated with the assumption of the consistent

change of the heat transfer coefficient

aðT Þ ¼ a0T a�1=T a�1
0 ¼ a0T 1�a

0 T a�1: ð38Þ

Applying the constant quantity Gc0 	 G0c0 in the

HTU defined in terms of the initial value Gc

ðHTUÞ0 	
Gc0

a10avF 10

ð39Þ

and introducing the nondimensional time based on the

properties of first fluid
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s1 ¼
x

ðHTUÞ0
ð40Þ

yields

q1=g1 ¼ d2Q1=dtdc1 ¼ �GcðT 1ÞdT 1=ða1dA1Þ

¼ � Gc0T 1�a
0 T a�1

1 dT 1

a10T 1�a
0 T a�1

1 avF 10dx
¼ � dT 1

ds1
: ð41Þ

Yet, if the proportionality assumption between Gc

and a1 cannot be assured, we don�t generally obtain

the equality of q1/g1 and �dT1/ds1 for the simple defini-

tion of s1 given by Eq. (41). For example, when a1 is a

constant equal to a10 and GcF still varies according to

(37) we obtain

q1
g1

¼ �Gc0T 1�a
0 T a�1

1 dT 1

a10avF 10dx
¼ �T 1�a

0 T a�1
1

dT 1

ds1
: ð42Þ

The multiplier term T 1�a
0 T a�1

1 is the price of using the

same simple definition of dimensionless time given by

Eq. (40) in the complex situation. Still the expression

considered assures that for the special case of a Newto-

nian medium the following formula

q1=g1 ¼ d2Q1=dtdc1 ¼ �dT 1=ds1 ð43Þ

(equivalent to Eq. (33)) is valid. Comparing (20) and

(42) yields in the general case of a non-Newtonian fluid

�T 1�a
0 T a�1

1 dT 1=ds1 ¼ g2
T a

1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2
ð44Þ

or

dT 1

ds1
¼ �g2

T a�1
0

T a�1
1

T a
1 � T 0a

Ug1ðT 0=T 2Þa�1 þ g2
: ð45Þ

This is a general dynamical equation of state for a

non-Newtonian fluid. For a = 1 we recover from it the

appropriate Newtonian formula. Yet the equation con-

tains the reference temperature T0 which is, again, the

price of using the simple definition of s1 (Eq. (40)) in

the complex situation.

We shall now specialize with what we called the hy-

brid nonlinear case. It involves the radiative heat transfer

(a = 4) in the upper reservoir and the convective heat ex-

change in the lower one ( _T 1 	 dT 1=ds1). We find both

apparent components of the total entropy production rs

rint0

s ¼ �
Z sf

si
GcðT 1Þ

U � 1

ðT a
1 þ _T

a
1Þ

1
a þ _T 1Ug1=g2

_T 1ds1 ð46Þ

and

rext0

s ¼ �
Z sf

si
GcðT 1Þ

1

ðT a
1 þ _T

a
1Þ

1
a þ _T 1Ug1=g2

� 1

T 1

 !
_T 1ds1:

ð47Þ

To obtain an optimal path associated with the limit-

ing production or consumption of mechanical energy the
sum of the above functionals i.e the total entropy pro-

duction in the form of a Lagrange functional

rs ¼ �
Z sf

si
GcðT 1Þ

U

ðT a
1 þ _T

a
1Þ

1
a þ _T 1Ug1=g2

� 1

T 1

 !
_T 1ds1

ð48Þ

has to be minimized for a fixed duration and defined end

states of the fluid. The most typical way to accomplish

the minimization is to write down and then solve the

Euler–Lagrange equation of the variational problem.

Analytical solutions are seldom, thus one has to rest

on numerical techniques.
6. Other nonlinear approaches

In general equations of nonlinear macrokinetics a re-

cent approach considers coupled transfer of particles (m)

and heat (h). Introduced are potentials Fi = (1/T,�li/

T), i = 0,1 . . . n, which are the thermodynamic conju-

gates of the extensive variables in the Gibbs equation

for the system�s entropy

dS ¼ T�1dE � T�1ladca 	
Xs
i¼0

F idCi 	 F:dC: ð49Þ

The process kinetics is described by the general ex-

change equation for the net flux Ji

J i ¼ I0j exp �
X
i

m
kiF
f
k=R

 !
� exp �

X
i

m
kiF
b
k=R

 !( )

ð50Þ

whose equivalent form in terms of deviations from equi-

librium is

J i ¼ Ieqi D exp �
X
i

m
kiðF
f
k � F eq

k Þ=R
 !

ð51Þ

with

Ieqi 	 I0i exp �
X

m
kiF
eq
k =R

� �
ð52Þ

as the common value of the absolute current at

equilibrium.

In the case of pure heat exchange the corresponding

kinetic set reduces to just one equation that describes the

nonlinear heat flux. The set of equations describing the

exchange of heat between each reservoir and the thermal

machine involves two equations. The first one describes

the heat flux driving the engine

q1 ¼ Ieq1 D expð�EðT�1 � T�1eqÞ=RÞ ð53Þ

where

Ieq1 	 I01 expð�ET�1eq=RÞ ð54Þ

and the symbol D in (53) refers to the suitable difference

of temperatures T1 and T1 0. The constant E is the activa-
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tion energy for thermal transfer. Analogous equation

holds for the second fluid. Close to equilibrium, a linear

approximation of the nonlinear exchange equation fol-

lows as

q1 ¼ Ieq1 ER
�1ðT�1

10 � T�1
1 Þ

ffi Ieq1 ER
�1ðT 1 � T 10 Þ=T 1T 10 : ð55Þ

Comparing this expression with the classical New-

ton�s structure q1 = g1(T1�T10) we find that the conduct-

ance in the present model can be evaluated in

accordance with the equation

g1 ¼ Ieq1 ER
�1=T 1T 10

¼ I01 expð�ET�1eq=RÞER�1=T 1T 10 : ð56Þ

This also shows that the correspondence with classi-

cal equation of heat exchange can be assured. Above

equation may serve to estimate the value of the exchange

current provided that the heat exchange coefficient a,
constant E and the common equilibrium temperature

of two bodies is known. It should be realized that E

characterizes the temperature dependence of the heat

conductivity.

We can now write down the kinetic equations for

both reservoirs. For the known process coefficients the

heat exchange equation for the first reservoir has the

form

q1 ¼ I01fexpð�E1=RT 1Þ � expð�E1=RT 10 Þg ð57Þ

whereas that for the second one is

q2 ¼ I02fexpð�E2=RT 20 Þ � expð�E2=RT 2Þg: ð58Þ

On this ground one can develop the nonlinear theory

in which thermal conductivities and related conduct-

ances are variable i.e. are state functions.
7. Classical Newtonian fluids

Analytical solutions are possible for linear problems

in particular. For the Newtonian heat exchange in both

reservoirs (a = 1) formulae (46) and (47) simplify to the

forms

rint0

s ¼ �
Z sf

si
Gc

U � 1

T 1 þ _T 1 1þ g1
g2

U
� � _T 1ds1 ð59Þ

rext0

s ¼ �
Z sf

si
Gc

1

T 1 þ _T 1ð1þ g1
g2

UÞ
� 1

T 1

 !
_T 1ds1: ð60Þ

Their sum constitutes the exact functional of the total

entropy production that is the basics for the linear the-

ory developed earlier [23,24]. Still the linear theory pre-

sented here is more general than the cited previous
theory since the latter is here generalized to the imperfect

energy generators (consumers) associated with U differ-

ent than the unity.

Eqs. (46)–(48) contain expressions representing the

Carnot temperature T 0 in terms of the upper reservoir

temperature T1 and the time derivative of this quantity.

In fact, these equations prove that the success in achiev-

ing Lagrange functionals (necessary when one wants to

apply the classical method of calculus of variations) is

crucially dependent on the possibility of getting Carnot

temperature T 0 in the form of an explicit analytical func-

tion of T 0 and dT 0/ds. In the case of the symmetric non-

linear model (radiative exchange on both sides of the

engine) such explicit function was impossible to find,

yet as we have shown in Eq. (48) the possibility exists

in the case of the hybrid nonlinear model. For the latter

model one can therefore write down explicit Euler–La-

grange equations of the variational problem and per-

form extremization of functionals describing either the

entropy production or produced (consumed) power. In

fact, our earlier work [23] shows that such functionals

yield the same optimal trajectory whenever fixed end

states are assumed at the beginning and the end of the

process.

In the case of the Newtonian fluid (a = 1) the already

known result is obtained from Eq. (35) or (45)

dT 1

ds1
¼ �g2

T 1 � T 0

Ug1 þ g2
: ð61Þ

In this (Newtonian) case we usually work in terms of

overall conductances and their associates

q1 	
d2Q1

a1dtdA1

g1 ¼ ðT 1 � T 10 Þg1 ¼
g1g2ðT 1 � T 0Þ

Ug1 þ g2
ð62Þ

whence, after defining an overall g 0(U)

g0 	 g2g1
Ug1 þ g2

¼ ðg�1
1 þ Ug�1

2 Þ�1 ð63Þ

one obtains

q1 ¼ g0ðUÞðT 1 � T 0Þ ð64Þ

which is a well known result [22]. On the other hand

q1=g
0 ¼ d2Q1=dtdc ¼ �u ¼ �GcdT 1=a

0dA ð65Þ

that yields a result linking q1 with the change of T

q1=g
0 ¼ �GcdT=ða0avF dxÞ ¼ �dT 1=ds: ð66Þ

For the Carnot temperature we shall obtain an

operator formula. Using the transformed form of Eq.

(61)

g1
dT 1

ds1
¼ � g1g2

Ug1 þ g2
ðT 1 � T 0Þ ð67Þ



Fig. 2. Influence of internal irreversibilities U on the limiting

finite-rate work.
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along with the definition of g 0 (Eq. (63) above) we

find

T 0 ¼ T 1 þ
dT 1

ds1
a1dA1

1

a0
1dA

þ U
a0
2dA

� �
ð68Þ

or

T 0 ¼ T 1 þ _T 1a1

dA1

dA
Ua0

1 þ a0
2

a0
1a

0
2

� �
: ð69Þ

The bracket term of this equation contains the recip-

rocal of the overall heat transfer coefficient a 0; hence

T 0 ¼ T 1 þ _T 1

a1dA1

a0dA
¼ T 1 þ

dT 1

ds
ð70Þ

where A = A1 + A2 and the last derivative is with respect

of s not s1. Thus, all suitable equations of the Newto-

nian fluid operate with the variable s (overall number

of heat transfer units modified by the presence of U), in-

stead of the ‘‘partial’’ quantity s1.
In the case of Newtonian fluid the minimization of

the entropy production integral for the dynamical prob-

lem involves the extension of the established endorevers-

ible formula [23] to the case taking the internal

dissipation into account. The extension has the form

rs ¼
Z sf

si
Gc

_T

T ðT þ _T Þ
� U � 1

T þ _T

� �
_Tds: ð71Þ

The optimal solution can be obtained by the varia-

tional calculus; it proves that an unconstrained extremal

is an exponential curve satisfying the optimality

condition

dT
ds

¼ nðUÞT : ð72Þ

The modified non-dimensional time s, or the ratio of

pipeline length x and the height of the transfer unit HTU

related to overall g 0 of Eq. (63), is identical with the (U
dependent) overall number of transfer units. n(U) is the

rate indicator which is positive for the fluid�s heating and
negative for fluid�s cooling. From the problem boundary

conditions of the problem the numerical value of the n
follows.

As it follows form the definition of U contained in

Eq. (3) the following equality is valid

rint
s ¼ T�1

10 q1ðU � 1Þ: ð73Þ

This equation can be used to show that the second

term in (71) does not represent the sole effect of the inter-

nal dissipation. Of course this statement also holds

for the general non-Newtonian model. For the general

model we find

rint
s =q1 ¼

ðU � 1Þ

T a
1 � g2

T a
1
�T 0a

Ug1ðT 0=T 2Þa�1þg2

� �1=a ð74Þ
and

rext
s =q1 ¼

1

T 0 �
1

T 1

� �
þ ðU � 1Þ

� 1

T 0 �
1

T a
1 � g2

T a
1
�T 0a

Ug1ðT 0=T 2Þa�1þg2

� �1=a
0
B@

1
CA ð75Þ

In fact, each of two additive parts of functional (71)

or the additive parts of nonlinear functionals discussed

can contribute to the external and internal dissipation.
8. Example of generalized exergy for Newtonian fluid

The Carnot temperature control ensuring the extre-

mum of work associated with the Newtonian functional

(71) is

T 0ðsÞ ¼ T ðsÞð1þ nðUÞÞ

¼ T iðT f =T iÞðs�siÞ=ðsf�siÞð1þ lnðT f =T iÞ=ðsf � siÞÞ
ð76Þ

It corresponds with the power expression (29) in the

case a = 1. Its integration along the optimal path with

respect to time yields the generalized availability

A1 ¼ Aclass þ cð1� UÞT e lnðT=T eÞ

� cT eU
½lnðT=T eÞ�2

sf � si � lnðT=T eÞ ð77Þ

The properties of this function are depicted in Fig. 2.

It illustrates the effect of internal irreversibilities U on

limiting finite-rate work generated in engines and con-

sumed in heat pumps. Example for non-ideal heat pump

with U = 0.5 and non-ideal engine with U = 1.5, working

with finite resources.

Generalized exergy of limiting continuous process,

A1, prohibits processes from operating below the

heat-pump mode line for U = 0.5 (the lower bound for

work supplied) and above the engine mode line for
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U = 1.5 (the upper bound for work produced). Weaker

endoreversible limits correspond with curves for U = 1;

still weaker limits of classical exergy are represented by

the straight line A = Aclass. Dashed lines mark regions

of possible improvements when imperfect thermal ma-

chines are replaced by those with better performance

coefficients, terminating at endoreversible limits for Car-

not machines.

The classical thermal availability contained in this

equation is defined in the standard way

Aclass 	 cðT � T eÞ � cT e lnðT=T eÞ: ð78Þ

The classical availability is the potential or the state

function whose change between two arbitrary states de-

scribes the reversible work. On the other hand, general-

ized availability functions are irreversible extensions of

this classical function including minimally irreversible

processes. Due to the internal and external irreversibili-

ties the limiting work estimates made with the help of

classical function (78) are too weak and often insuffi-

cient; the function (77) assures stronger work limits.

Note that the mean process efficiency or the ratio

A1/Q1 is lower than the pseudo-Carnot efficiency (9)

due to the finiteness of the resource flow and the corre-

sponding decrease of the resource temperature as the

process advances in time.
9. Conclusions

The obtained exergy functions are irreversible gener-

alizations of the standard (reversible) exergy for the case

of imperfect stages. The generalized exergy in processes

departing from the equilibrium (upper sign) is larger

than the one in processes approaching the equilibrium

(lower sign). This is because one respectively adds or

subtracts the product of Te and entropy production in

equations describing the generalized availability. We ob-

serve that the limits for mechanical energy yield or con-

sumption provided by exergies A1 are always stronger

than those defined by the classical exergy. Thus, in both

modes the generalized exergies provide enhanced

bounds in comparison with those predicted by classical

exergy. Our modeling shows that both internal and

external dissipation increases the minimum work that

must be supplied to the system. Likewise, both internal

and external dissipation decreases the maximum work

that can be produced by the system. Therefore functions

A1 provide work limits which take into account limita-

tions resulting from finite rates of external transports

and internal irreversibilities.
Acknowledgments

The authors acknowledge the financial support from

Polish Committee of National Research (KBN); grant
T09C 024 26: Non-equilibrium thermodynamics and

optimization of chemical reactions in physical and bio-

logical systems.
References

[1] D. Gutowicz-Krusin, J. Procaccia, J. Ross, On the

efficiency of rate processes: power and efficiency of heat

engines, J. Chem. Phys. 69 (9) (1978) 3898–3906.

[2] A. De Vos, Reflections on the power delivered by

endoreversible engines, J. Phys. D: Appl. Phys. 20 (2)

(1987) 232–236.

[3] L. Chen, Z. Yan, The effect of heat transfer law on the

performance of a two-heat-source endoreversible cycle, J.

Chem. Phys. 90 (4) (1989) 3740–3744.

[4] L. Chen, F. Sun, W. Chen, Influence of heat transfer law

on the performance of a Carnot engine, J. Eng. Thermo-

phys. 11 (3) (1990) 241–243.

[5] J.M. Gordon, Observations on efficiency of heat engines

operating at maximum power, Am. J. Phys. 58 (4) (1990)

370–375.

[6] C. Wu, Power optimization of a finite-time solar radiation

heat engine, Int. J. Ambient Energ. 10 (3) (1989) 145–150.

[7] C. Wu, Optimal power from a radiating solar powered

thermionic engine, Energ. Conv. Manage. 33 (1) (1992) 59–

67.

[8] L. Chen, F. Sun, C. Wu, Effect of heat transfer law on the

performance of a generalized irreversible Carnot engine,

J. Phys. D: Appl. Phys. 32 (2) (1999) 99–105.

[9] S. Sieniutycz, M.R. von Spakovsky, Finite time generali-

zation of thermal exergy, Energ. Conv. Manage. 39 (14)

(1998) 1423–1447.

[10] S. Sieniutycz, Thermodynamic framework for discrete

optimal control in multistage thermal systems, Phys. Rev.

E 60 (1999) 1520–1534.

[11] T.J. Kotas, Exergy Method of Thermal Plant Analysis,

Butterworths, Borough Green, 1985, pp. 2–19.

[12] R.E. Bellman, Adaptive Control Processes: a Guided Tour,

Princeton University Press, Princeton, 1961, pp. 1–35.

[13] L.T. Fan, The Continuous Maximum Principle, A Study of

Complex System Optimization, Wiley, New York, 1966,

pp. 329–342.

[14] S. Sieniutycz, Optimization in Process Engineering, second

ed., Wydawnictwa Naukowo Techniczne, Warszawa, 1991,

pp. 151–194.

[15] H. Rund, The Hamilton–Jacobi Theory in the Calculus of

Variations, Van Nostrand, London, 1966, pp. 1–32.

[16] L.S. Pontryagin, V.A. Boltyanski, R.V. Gamkrelidze, E.F.

Mischenko, The Mathematical Theory of the Optimal

Processes, Wiley, New York, 1962, pp. 13–85.

[17] R. Aris, Discrete Dynamic Programming, Blaisdell, New

York, 1964, pp. 10–39.

[18] R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M.

Tsirlin, Thermodynamic Optimization of Finite Time

Processes, Wiley, Chichester, 2000, p. 117.

[19] F.L. Curzon, B. Ahlborn, Efficiency of Carnot engine at

maximum power output, Am. J. Phys. 43 (1975) 22–24.

[20] M.J. Ondrechen, B. Andresen, M. Mozurkiewicz, R.S.

Berry, Maximum work from a finite reservoir by sequential

Carnot cycles, Am. J. Phys. 49 (1981) 681–685.



730 S. Sieniutycz, P. Kuran / International Journal of Heat and Mass Transfer 48 (2005) 719–730
[21] A. Bejan, M.R. Errera, Maximum power from a hot

stream, Int. J. Heat Mass Transfer 41 (1998) 2025–2036.

[22] S. Sieniutycz, Z. Szwast, Work limits in imperfect sequen-

tial systems with heat & fluid flow, J. Nonequilib.

Thermodyn. 28 (2003) 85–114.
[23] S. Sieniutycz, Nonlinear thermokinetics of maximum work

in finite time, Int. J. Eng Sci. 36 (1998) 557–597.

[24] S. Sieniutycz, Work optimization in continuous and

discrete systems with complex fluids, J. Non-Newtonian

Fluid Mech. 96 (1–2) (2001) 341–370.


	Nonlinear models for mechanical energy production in imperfect generators driven by thermal or solar energy
	Introduction
	Thermodynamic issues
	Entropy produced and efficiency
	Heat flux and power in steady operations
	Symmetric nonlinear case
	Hybrid nonlinear case

	Dynamical theory for finite resources
	Other nonlinear approaches
	Classical Newtonian fluids
	Example of generalized exergy for Newtonian fluid
	Conclusions
	Acknowledgments
	References


